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The projector formalism of Zwanzig-Mori type is extended to obtain 
generalized Fokker-Planck and generalized nonlinear Langevin equations for 
coarse-grained variables when the underlying microscopic dynamics is 
dissipative and noisy (stochastic). 
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1. I N T R O D U C T I O N  

Brownian motion theory (I) and its generalizations ~2) have successfully 
described the behavior of slow variables in complex many-body systems 
which have time scales well separated from those of other degrees of 
freedom of the system. The theory was provided with a new foundation in 
the sixties with the introduction of the projector formalisms (3'4) which 
provided a direct though formal link between the existing phenomenological 
Brownian motion theories and the underlying microscopic dynamics. The 
projector formalism was originally developed for the case of classical non- 
dissipative dynamical systems. (3) Extensions to other dynamical systems 
(quantum systems (4) and also dissipative systems with noise (5)) have so far 
been limited to the case of linear Brownian dynamics. On the other hand, 
the limited usefulness of linear Brownian motion theories is now well 
recognized.(6-8! A source of difficulty when the underlying dynamics is 
dissipative and noisy is the following. Consider a product of coarse-grained 
dynamical variables A1A2.... This product averaged over the noise is 
generally different from the product of the noise-averaged variables. Thus, 
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straightforward extensions of the existing projector formalisms (3'8) are 
not enough to obtain, for example, a closed generalized Fokker-Planck 
equation for the probability distribution function of the coarse-grained 
dynamical variables. 

In recent years the statistical mechanics of mesoscopic objects 
has drawn a great deal of attention. Examples are polymers, colloids, 
emulsions, and membranes (9) as well as varieties of topological defects 
associated with the spontaneous breakdown of symmetry. (~~ Mesoscopic 
equations of motion governing these objects are generally dissipative and 
noisy. In these areas one is often interested in understanding macroscopic 
behavior, such as rheological behavior, on the basis of mesoscopic (or 
"microscopic") equations. This requires coarse-graining of the mesoscopic 
equations themselves. This circumstance motivated us to develop a projec- 
tor formalism which is general enough to incorporate a wider class of 
underlying "microscopic" equations. 

The paper is organized as follows. After some preliminary discussion 
in Section 2, the projector formalism is explained and the generalized 
Fokker-Planck equation is obtained in Section 3. Section 4 considers a 
corresponding generalized nonlinear Langevin equation and Section 5 
concludes the paper. Some of the more involved algebras is deferred to an 
Appendix. 

2. P R E L I M I N A R I E S  

We consider a general system whose state can be described in some 
stage of coarse-graining by a set of "microscopic" variables which can 
be represented by a point x in the multidimensional space of the 
"microscopic" variables characterizing the system. We call this space the 
phase space and x the phase point. As long as we have no access to 
complete "microscopic" information about a state of the system, we can 
only deal with a phase space distribution function D(x, t). The time evolu- 
tion of the system is then described by the equation for D of the following 
general form: 

D(x, t) = E2(x) D(x, t) (2.1) 

where ~?(x) is an operator acting in the phase space. We assume the 
existence of a unique stationary (or equilibrium) distribution De(x) such 
that 

-Q(X) De(x ) = 0 (2.2) 
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The normalization of D(x, t) requires that 

f dx g2(x) . . . .  0 (2.3) 

where . . ,  is any phase function and the integral is over the entire phase 
space. 

We point out that the operator f2(x) does not need to be a first-order 
differential operator as with the usual Liouville operator of classical 
mechanics, nor is i•(x) necessarily a self-adjoint operator. As a conse- 
quence, the time-displacement operator defined by exp[- t~2(x)]  in general 
has the following property (here and henceforth the argument x is often 
suppressed for brevity unless confusion might arise): 

e-'~ Vm(G(x) ) # F~(e-ta F2(x) ) (2.4) 

where /'2(X) is any phase function and /'1{/'2) is any function of F 2. Such 
a more general class of the operator f2 is required when (2.1) already 
contains some stochastic processes, as with the Fokker-Planck equation, 
or when (2.1) is a quantum mechanical Liouville equation expressed in 
terms of c-number quantities like a Wigner function, (11) although we shall 
not discuss the quantum case in any detail here. 

It often happens in statistical physics that the level of description 
provided by (2.1) is too detailed for our need and further coarse-graining 
is desired, as was mentioned in the preceding section. In the new coarse- 
grained description the original set of variables x is replaced by a new set 
of a fewer number of phase functions collectively denoted as A(x). A state 
in this newly coarse-grained description is specified by a set of numbers a 
taken by A(x). Instead of the phase space distribution D(x, t) we now have 
the reduced distribution g(a, t) defined by 

g(a, t) =- f dx 6(a - A(x)) D(x, t) (2.5) 

where the delta function is in fact the product of delta functions for every 
member of the set a - A ( x ) .  We shall refer the multidimensional space in 
which a is defined as the state space. 

Our goal here is to find a closed equation for g(a, t) starting from 
(2.1). The fact that this is not an easy task can be seen by looking at 

• g(a, t) = f dx 6(a - A) s t) (2.6) 
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and the rhs is not readily expressible in g(a, t). This is an inevitable conse- 
quence of coarse-graining associated with (2.5). That is, g(a, t) cannot be 
uniquely determined by knowing g(a, t ') at some earlier time t' < t only, 
but additional information at t' is also required, and in particular, 
ag(a, t)/Ot cannot be given solely in terms of g(a, t) at the same time. The 
missing information can be supplied if we know g(a, t') at all the earlier 
times t ' <  t. As a trivial example, consider two variables which decay 
exponentially in time, and then couple them linearly. Now, under suitable 
conditions each variable is a sum of two exponentially decaying functions 
with two arbitrary coefficients in front. Then the time rate of change of one 
of the variables cannot be determined by the value of that variable at the 
same time, since this is not enough to determine both coefficients in front, 
the missing information being supplied by knowledge of that variable at 
another time. The projector formalism is a succinct way to incorporate this 
missing information for a general case. 

3. P R O J E C T O R  F O R M A L I S M  

In order to prepare for the introduction of a projector, we start from 
the following formal solution of (2.1): 

D(t )  = etOD(O) (3.1) 

Substituting this into (2.5) and using (2.3), we find 

g(a, t) = f ,~(a, t) D(O) dx  (3.2) 

where 

~,(a, t) =- e t~ 6(a - A ) e  to = 6(a - f l ( t ) )  (3.3) 

and 

f l u )  = e t~AetO (3.4) 

Note that .3(0 for t > 0 is in general still an operator in the phase space, 
since (2 in general contains higher-order differentiation operators. Hence 
~(a, t) is also a phase space operator. It is convenient to define the com- 
mutator operator Oc for an arbitrary phase space operator O by 

o c ( . . . ) -  [o ,  (.. .)] = o ( . . . ) -  ( . . . )o  (3.5) 

where (.-.) is anything that stands to the right of Oc. Here we note that the 
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relation e~ o _ eO~f holds for arbitrary phase space operators f and O, 
which can easily be shown by expanding the operator e ~ etc., in Taylor 
series in O. Then (3.3) and (3.4) are rewritten as 

~(a, t) = e-m~ ~(a, 0) (3.6) 

.d(t) = e tarA (3.7) 

(3.2) thus becomes 

g(a, t) = f [e - '~  ~(a, 0)]+ D(0) dx (3.8) 

where the subscript c attached to the bracket implies that the commutation 
operation of (3.5) is to be confined within the bracket, although, of course, 
the phase space operator inside the bracket acts to the right. 

We now transform the operator (d/dt)e -~ac that governs the time 
evolution of the reduced distribution. A useful feature of g2 c in contrast to 
s with the property (2.4) is that we now have 

e -  t ~ c F I ( F 2 )  --- V,(e-'~+V2) (3.9) 

where F2 can be a phase space operator. This turns out to be crucial in the 
projector formalism to be employed in this transformation. It is precisely 
this property of ~+ in contrast to (2 which requires the phase space 
operator ~(a, t) in order to achieve a consistent projector formalism in the 
following. 

We now introduce a projector P acting on a phase space operator 
O(x) as follows: 

PO(x) =g~-~(A(x)) f O(x') 3 (A(x ) -  A(x')) De(x') dx' (3.10) 

where ge is the equilibrium reduced distribution defined by (2.5) in which 
D is replaced by De. Note that PO is no longer a phase space operator, but 
a phase space function, even though O is a phase space operator. 

The next step is to use the following operator identity(12~: 

d e tac= _e-t~+pg?c+fodse-(t s~OcpQce-,QO~Qf2c_e,QacQQ, (3.11) 
57 

where 

Q=- I -  P (3.12) 

822/67/'3-4-24 
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This then leads to the following equation for ~(a, t): 

~t~(a , t )=  _ e - m c p f 2 c 6 ( a _ A ) +  f~ ds e ~t S)~c 

x Pg2ce sO~cQg2c6(a-- A) - -e  'O~2cQf2c6(a-- A ) (3.13) 

Each term on the rhs must now be transformed into a more transparent 
form that permits one to see its relationship with ~. Since this involves 
considerable algebra, details are deferred to the Appendix and only the 
final results are presented here. Namely, (3.13) is formally transformed into 

_• f _ c?t ~(a, t) = Oa" V(a) ~,(a, t) + ds da' -~a" g~(a) K(aa', s). ~ Oa' 

• ', t - s ) -  O~ - .  [e-~ea~f(a, x ) 6 ( a - A ) ] ~  (3.14) 
o a  

where V(a) is the state space operator defined by 

and 

De(x) (3.15) V(a) =- f dx V(a, x) 6(a - A(x)) ge(a-----" ~ 

1 

l)(a, x )=  fo ds :e-S(A-a)'~/aa: [ - g ? ,  A] 

f (a,  x) =- (~(a, x) - V(a) 

(3.16) 

(3.17) 

Here the symbol '" means that the differential operator Q/Oa must always 
be placed at the extreme left. K(aa', s) is the memory kernel, itself a tensor 
in the state space, given by 

i" 
K(aa', t) = ge(a)-I j dx [e-'Q~2c fr(a, x) 6(a - A ) ] c f ( a ,  x) 6 ( a ' -  A) De(X ) ! 

(3.18) 

Now, both sides of (3.14) are still phase space operators. The equation 
for g(a, t) is then obtained, using (3.2), as 

g ( t )  = - V(a) g(a, t) + Jo ds jda '  �9 ge(a) K(aa', s).8a---; 

• ge l (a ' )g(a  ', t - s ) - ~  - .  y(a, t) (3.19) 
u a  
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where 

y(a, t) =- f dx [e-ta~ x)6(a -- A)]~ D(O) (3.20) 

It should be recalled that the projectors in (3.20) do not act on D(0). 
Now, if our coarse-grained description is a physically sensible one, the 

information about the system which cannot be described by the state 
variables should be irrelevant and no harm will be done by throwing 
them away at the outset. In other words, D(0) may be chosen to be a 
constrained equilibrium phase space distribution Dc(x; ao) given by 

Dc(X; ao) = 6(A(x) -- ao) De(x)/ge(ao) (3.21) 

(Care is needed for quantum mechanical cases. ~s)) In this case the last 
term of (3.19) can be shown to vanish in view of the property V(a)= 
P(x') l;'(A(x'), x) with A(x')= a and the following result is valid for an 
arbitrary phase space operator O(x): 

f dx [PO] 6 ( A - a o ) D e = f  d x f  dx' g~-l(A) 0 ' 6 ( A - A ' )  D;6(A-ao)D~ 

= f dx f dx' O'(5(a o - A') D'6(A - ao)De/ge(ao) 

= f  dx 06(ao--A)D~ (3.22) 

which takes the form 

f dx [QO] 6(A - ao)O e = 0 (3.23) 

Here primed phase space functions and operators mean that their 
arguments are x'. In this case (3.19) reduces to 

-~ g(a, t) = - ~--~. V(a) g(a, t) 

+ f~ ds f da, ~a.g~(a) K(aa,,s). ~3 g(a', t - s )  ~a' g-~ (-aT) (3.24) 

This completes the derivation of a closed-form equation for the state space 
distribution g(a, t) for the constrained equilibrium initial phase distribu- 
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tion. As demonstrated in the Appendix, this equation has ge(a) as its 
stationary solution. 

A familiar special case is when (2.1) is a classical Liouville equation 
with 

s = -iL(x) (3.25) 

where L(x) is the Liouville first-order differential operator. Here 
[-(2, A] = [iL, A] is simply a phase space function which is also equal to 
l?(a,x) when operated on 6(a-A) by (A.6), where in fact there is no 
dependence on a. Thus, by (A.8), V(a) simply reduces to v(a), which is the 
average of the rate of change ,4 - [iL, A] in the constrained equilibrium 
state and is no longer an operator: 

V(a)=v(a)=--f dxJ(x)b(a--A(x))De(x)/ge(a) (3.26) 

where we have also used (A.27). This is also equal to PA, that is, PI?(a', x) 
evaluated at A(x)=a by (3.10). Therefore, by (3.17) we find 

f(a, x) = f ( x )  - Ql2(a', x)= QA (3.27) 

which is valid at a = A(x) but does not depend on a'. In this case (3.24) 
reduces to the generalized Fokker-Planck equation due originally to 
Zwanzig. (3) In particular, the aft element of the tensor K becomes 

K~(aa', t) = gel (a)  f dxf~(x) 6(a'-A)[ei'~ 6(a - A ) ]  De(x) (3.28) 

It is useful to note the following symmetry property reflecting the detailed 
balance: 

g~(a) K~(aa', t)= g~(a') Kt~(a' a, - t )  (3.29) 

For a proof, multiply the integrand of (3.28) by e -iQtz from the left, which 
does not change (3.28) in view of S dx QL . . . .  0. Then (3.28) becomes 

K~a(aa', t ) =  ge l (a )  f dx [e itQCf~(x) 6(a'- A)]f~(x) c~(a, A) De(x) 

Then (3.29) follows automatically. 
The result (3.24) differs from the Zwanzig generalized Fokker Planck 

equation ~3) in that V(a) in general contains differential operators with 
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respect to the state space variables and also K does not necessarily satisfy 
(3.29). 

As a second example we consider the case where (2.1) is a purely 
dissipative equation of the form 

Q 
~2 = kB T~-~-,u(A). De ~ -  D j  1 (3.30) 

where #(a) is a mobility tensor in the a space. Then we find, as shown in 
the Appendix, 

V(a) = -ku T#(a) . ge(a) ~ g j  l(a) (3.31) 

Thus, in this case the first term on the rhs of (3.24) already gives the usual 
Fokker-Planck equation in the state space and the second term in (3.24) 
gives a correction which is normally neglected. 

4. G E N E R A L I Z E D  L A N G E V I N  E Q U A T I O N  

Instead of the state space distribution g(a, t), one can also consider 
the state variables themselves as dynamical variables, and thus obtain a 
generalized Langevin equation. The first step is to multiply (3.14) by a and 
integrate over a. With the use of (3.3), (3.4), and (3.7) we then find 

d A  
~A(t)=v(fl( t))+ ds ~P(s, A( t -s))+P(t)  (4.1) 

where v(a) is a function of a redefined as 

v(a) =- V(a). 1 (4.2) 

F(t)-  e-'Q~ f(.,~(x), x)e 'Qo (4.3) 

and 

with 

gt ( t ,a)--g~l(a)Z ~ K~(t, a) ge(a) 

R~a(t, a) = g71(a) f &' ge(a') K~(t, a'a) 

(4.4) 

=f  dx~'~(t)f~{a,x)6(a-A(x))De(x)ge(a) -1 (4.5) 
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In general, (4.1) is still an operator equation, which reflects the fact that 
(1.1) does not describe a deterministic trajectory in phase space, in contrast 
to the classical Liouville equation. That is, the corresponding phase space 
equation of motion is written as 

d 
,~(t) - ~ x ( t )  = ~ ( x ( t ) ,  t) (4.6) 

where re(x, t) contains random elements and x(t) represents the set of 
phase space variables. The stochastic phase space equation of motion for 

D(x, t) = 6(x - x(t)) (4.7) 

is 

~t D(x, t) = ~( t )  D(x, t) (4.8) 

where 

0 
f~(t) = ~x ~(x, t) (4.9) 

is a stochastic Liouville operator. That is, choosing D(x, O)= D(x, 0), we 
have 

D(x, t)=exp + [ff ds~(s)] D(x, O) (4.10) 

where exp + is the time-ordered exponential. The phase space distribution 
D(x, t) is obtained by averaging (4.10) over random elements contained in 
~.03) That is, 

D(x' t)= (D(x' t) )~ (exp + Iff dsf~(s)])o~ D(x, O) (4.11) 

Then (2 is related to s through {14) 

1 
f2=t(exp+IIodX~(S)]-l)c m (4.12) 

where (.--)ore is the cumulant average over ~.' That (4.12) is independent 
of t is the restriction imposed on the nature of random elements in ~ which 
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must be delta-correlated in time. The phase function A(t)__= A(x, t) corre- 
sponding to the state space variable a is 

A(t) = exp If~ds~+(x(s),s)]A(x(O)) (4.13) 

where fl* is the adjoint operator of s 

f~t(x, t ) -  o(x, t)~?/~?x (4.14) 

and exp_ is the same as exp + except that time-ordering is now reversed. 
A(t)*. 1 is obtained by averaging (4.13) over o :  

A(t)* - 1 = e '~'(x~ A(0). 1 (4.15) 

with 

s l ( e x p  IfordS~t(x,s)l-llcm (4.16) 

which is the adjoint operator of f2(x), (4.12). Since f2* operating on a 
constant vanishes, we have 

ft(t)* = e'O* A(O)e-m~ (4.17) 

Next we consider the product 

The second step is justified since ~* is the first-order differential operator. 
Averaging over o, we now find 

(As(t) A~(t))o) = et~*A~A~ = A~(t) A*~(t). 1 (4.19) 

This applies to any function X(A(t)) of As(t), so that 

(X(A(t)))~o = et~+X(A) = X(A(t)*). 1 (4.20) 

The results obtained in this section up to now permit us to interpret 
the adjoint of the operator equation (4.1) operating onto unity to the right 
as the o-averaged equation for A(t) of the same form as (4.l) where A(t) + 
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everywhere is replaced by A(t) except for the last term, which is replaced 
by the phase function F(x, t) defined by 

F(x, t) = F(t) +. 1 (4.21) 

The desired generalized Langevin equation is then the equation for A(t) 
before taking co-avergaging. Thus, we split co(x(t), t) as 

co(x(t), t) = o5(x(t), t) + f~o(x(t), t) (4.22) 

where o3 is the co-averaged part and fo) is the remainder that vanishes after 
co-averaging. In this way the generalized Langevin equation for the random 
variable A(t) is obtained as 

d 
-fftA(t)=v(A(t))+ ds T(s, A ( t - s ) ) + F ( t ) + f A ( t )  (4.23) 

where 

fA(t) = f~,(t)- 0~(t) A(x(t)) (4.24) 

and e3 is assimilated into the first two terms on the rhs of (4.23). 
The generalized Langevin equation now has two kinds of random 

forces, fA (t) originates from the random force inherent in the starting equa- 
tion (1.1). This term is connected to the dissipative part of v(A(t)) through 
a ,'microscopic" fluctuation-dissipation relation. We shall not elaborate on 
this any further, since this is more or less known. Another random force 
F(t) arises from the coarse-graining process of reducing the phase space 
into the state space. The corresponding fluctuation-dissipation relation is 
already given through (4.4) and (4.5). Equation (4.5) can be put in a 
slightly different form as 

K~a(t, a) = g7 l(a) f dx De(x ) (~(a - -  A(x)) ~* a f~( , x)(E~(x, t))~o (4.25) 

When (1.1) is the classical Liouville equation with (3.25), Eq. (4.23) 
reduces to the known result. ~12) 

Finally we note that the generalized Langevin equation derived here 
does not give complete information on the stochastic processes under 
consideration, since this is the first moment equation of the generalized 
Fokker-Planck equation and must be supplemented by equations for 
higher moments. Nevertheless, this type of generalized Langevin equation 
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has been useful to generate various approximation schemes, such as the 
mode coupling approximation,(7'1~ random forces are assumed to be 
Gaussian. 

5. D ISCUSSION 

Equation (4.1) and similar equations for higher moments obtained 
from (3.1) by multiplying it by products of the a's and integrating over a 
suggest an alternative way to derive the results of this work, which is closer 
to the procedure followed by Nordholm and Zwanzig/8) From Sections 2 
and 4 we see that the time development of a physical quantity corre- 
sponding to the phase function X(x )  can be obtained by the operator 

f i t ( t )  = et~* Xe-t~* (5.1) 

We can then write down, using the standard projector formalism, ~4) the 
generalized linear Langevin equation in the operator form for a column 
vector of dynamical variables consisting of products of -3*(0. Putting all 
these equations together, one should be able to derive an operator equa- 
tion which is Hermitian conjugate to (3.14), although we have not yet 
verified this. 

In the present paper we were able to extend the powerful projector 
formalism beyond what is currently available (Section 1). This will help us 
to examine the basis of some existing applications of the projector 
formalism to dissipative and noisy systems such as polymer systems. We 
hope to report on such studies in the future. 

APPENDIX  

First we consider the operator 

O~(x) - [f2c 3(a - A(x))]~, (A.1) 

In order to transform this expression, we note the following expansion for 
small t > 0: 

1 
01(x )  ~- - t [3(a-- .,i(t)) -- 3(a - A)] 

l fk (exp{ik . [a  A - t . 4 , ( 0 ) ] } - e x p [ i k . ( a - A ) ] )  
t 

= d s e x p [ i k . a - ( 1 - s ) i k . A ]  i k . f l t ( O ) e x p ( - i s k . A  ) (A.2) 
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Here k is a wave vector in the state space of a and ~k is the integral over 
the k space divided by (2n) -a', ds being the dimensionality of the state 
space; the subscript t on A stands for time derivative. The dot denotes the 
scalar product of vectors in the state space. Since .zi,(0)= -[-f2, A], we can 
also write 

OI(X) = --~aa" ds e i(1-s)k'(a "4)[-[2, Ale  i~k~"-a) 

= -~---d.f~ ds f da' b(a'-A)[f2,  A ] b ( a - A - s ( a ' - A ) )  (A.3) 

where s and 1 - s  were interchanged in the last step. We then use 

6(a-A-s(a'- A))=exp l-s(a'- A). 6 1 L ~ ~(a--A) 

= :exp l -  s(a' - a) . ~---~]: b (a -  A ) (A.4) 

where the symbol :: means that differential operators d/~a must always be 
placed at the extreme left upon expanding the exponential differential 
operator. Hence (A.3) becomes 

where 

[12c 6 (a-  A(x))]c =-~a " ~'(a, x) 6 (a -  A(x) ) (A.5) 

De (A.8) V(a) - f dx C~(a, x) ~(a - A(x))  
ge( a~----) 

is the operator acting in the state space. Now the time displacement 

where 

I?(a,x)- ds:exp - s ( A - a ) . ~ a  : [ - f 2 ,  A] (A.6) 

In obtaining (A.6), integration over a' was trivially carried out. Operating 
by P on (A.5), we then find after some straightforward algebra 

O 
PEOc6(a - A(x))]c = ~a '  V(a) 6(a-  A(x) ) (A.7) 
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operator e t~c operating on (A.7) acts only on A(x). Therefore we find the 
following for the second term of (3.13): 

- [e-tOcpf2~ 3 (a -  A)]c = - -  

Then we immediately find 

a 
�9 V ( a ) ~ , ( a ,  t )  (A.9) (3a 

where 

Q[s (~(a - A(x))]c 0 = ~a .f(a, x) 6(a - A(x)) (A.IO) 

where 

Y(a, t, x) =- -[e-'~ 6(a - A)]c (A.14) 

and primes imply that x is to be replaced by x' in the arguments. To avoid 
confusion, we note that Y'(A, 0) is explicitly written as 

Y'(A, O)= Y(A(x), O, x ')= -Q(x')[f2c(x') 6 (A(x ) -  A(x'))] C (A.15) 

Here we have used (2.2) and the following identity: 

f dx XI(PX2)De = f dx (PXl) X'xD e (A.16) 

for a pair of arbitrary phase space operators X1 and X2. Equation (A.15) 
can be directly verified using the definition (3.10). Let us rewrite (A.13) as 

02( t ,a ,x)= - ~ d a ' K * ( t ,  aa ' )6 (A(x ) -a ' )ge l (a  ') (A.17) 

f(a, x) = l~(a, x ) -  V(a) (A.11) 

Next we take up 

02(s, a, x) = P[f2ce s~-~cQs 3 ( a -  A(x))]c (A.12) 

By the definition of the projector (3.10) and noting (2.3), we find after 
some algebra 

O2(t, a, x) = - f dx' Y'(a, t) Y'(A, O) D'/ge(A) (a.!3) 
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where 

K*(t, aa') = f dx Y(a, t, x) Y(a', O, x) De(x) (A.18) 

is no longer an operator. Now, using (A.10), we have for Y(a, t, x) of 
(A.14) 

and thus 

a [e 'QOcf(a,x) 6(a--A)]  c Y(a, t, x) = - ~a (A.19) 

0 
K*(t, aa') = a--a aa--; : ge(a) K(aa', t) (A.20) 

where K is the tensor function in the state space given by 

K(aa', t) - ge(a) ' f dx [e 'aa'f(a, x) 6(a-- A)]~ 

• f (a ' ,  x) 6 ( a ' -  A) De(x) (A.21) 

and the symbol : means a scalar product of two tensors. Here we recall that 
the notation [. ] c implies that the commutation with ~2 extends only to the 
expression within [. ]c and that the phase operator with [. ]= extends all 
the way to its right. 

Substituting (A.9), (A.17) with (A.20) and (A.10) into (3.13), we 
finally obtain 

~ ( a , t ) =  oa.V(a)~,(a , t )+ ds da' .ge(a)K(aa';s) 0 ~a' 

~3 [e tQ~"fr(a, x) 6 ( a - A ) ] c  X gel(a')  ,~(a ', t -  s)--~a . (A.22) 

which is reproduced as (3.14). One can readily verify that the second and 
third terms on the rhs vanish if ~ is replaced by ge" TO see this for the 
second term, we use (A.5) and 

on the rhs of 

f dx [f2, 6 ( a - A ) ] D e = O  

~--. V(a) g=(a)= ~---~ .;  dx 12(a, x ) 6 ( a - A ) D e  aa 

(A.23) 

(A.24) 
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For a purely dissipative case given by (3.30) we have 

[(2, A ]De= kB T [ 2 #  " De ~-~ + (~-~" #De) I (A.25) 

Using 

:e s(o/o~). (A a). ~6(A -- a) 0 OA - ~a (s - 1 ) 6(A - a) (A.26) 

:e s(~/a~) (A a): (5(a-- A) = 6(a-- A) (A.27) 

as well as (A.25), we can readily find (3.31). 
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